# THE CRYSTAL AND MOLECULAR STRUCTURE OF (1,1'-TRIMETHYLENEDICYCLOPENTADIENYL)TITANIUM DICHLORIDE**** 

BETTY R. DAVIS and IVAN BERNAL<br>Chemistry Departmen:, Brookhaven National Laboratory, Upton, New York 11973 (U.S.A.)<br>(Received January 26th, 1971)

## SUMMARY

The crystal and molecular structure of (1,1'-trimethylenedicyclopentadienyl)titanium dichloride, $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$, has been determined from three-dimensional X-ray data collected by counter techniques. The coordination about the titanium atom is a distorted tetrahedron comprised of the two chlorine atoms and the centroids of the $\pi$-cyclopentadienyl rings of the $1,1^{\prime}$-trimethylenedicyclopentadienyl group. The $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ bond angle is $93.69(5)^{\circ}$ and the (centroid)- Ti -(centroid) angle is $132.64^{\circ}$. The $\mathrm{Ti}-\mathrm{Cl}$ bond distances are $2.372(1)$ and $2.364(3) \AA$. The titanium(ring centroid) distances are 2.061 and $2.060 \AA$ and the range of the $\mathrm{Ti}-\mathrm{C}$ distances associated with the $\pi$-cyclopentadienyl rings, $2.407(3)$ to $2.360(4) \AA$, establishes the pentahapto coordination mode of these groups. Crystal data: $a=8.490(2), b=$ 14.209 (4) , $c=10.185(2) \AA, \beta=90.43(2)^{\circ}$, space group $P 2_{1} / n, Z=4, D_{0}=1.57$ (1) and $D_{c}=1.57 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$. The structure was refined by least-squares techniques, using 1668 independent reflections for which $F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)$, and the refinement converged to a conventional $R$ factor (on $F$ ) of $2.9 \%$.

## INTRODUCTION

In a recent structural study ${ }^{1}$ of $\mathrm{Cp}_{2} \mathrm{TiS}_{5}{ }^{* * *} \mathrm{it} \mathrm{was} \mathrm{found} \mathrm{that} \mathrm{the} \mathrm{wo} \mathrm{cyclopenta-}$ dienyl rings exhibit different degrees of librational freedom. Concomitantly, there was an apparent difference in the length of the $\mathrm{C}-\mathrm{C}$ bonds of the two rings such that the one with the larger torsional motion (about $12^{\circ}$ ) had a smaller $\mathrm{C}-\mathrm{C}$ length ( 1.32 $\AA$ vs. $1.38 \AA$ ) than the one with the smaller (about $7^{\circ}$ ) librational motion. In order to demonstrate that this effect is an artifact of the torsional motion and in order to obtain proper values of the $\mathrm{C}-\mathrm{C}$ distance for Cp compounds of the type $\mathrm{Cp}_{2} \mathrm{MX}_{2}$ (with $\mathrm{M}=$ a metal such as $\mathrm{Ti}, \mathrm{Mo}, \mathrm{W}$, etc... and X a monodentate ligand) we sought a system in which torsional motional effects were minimized without having to resort to low temperature techniques. $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$ was chosen because

[^0]in this substance the two Cp rings are connected by a chain whose length is just about that necessary to span across two cyclopentadienyl rings canted approximately $130^{\circ}$ to one another ${ }^{1}$. Therefore, the thermal motion should be intramolecularly restricted and no cooling should be necessary to reduce the librational freedom associated with the apparently low values of the $\mathrm{C}-\mathrm{C}$ distances.

It is of more than passing interest that the structure of the parent compound, $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$, has not yet been studied in the crystalline state. This apparent omission may very well be connected with the fact that the crystals obtained from most solvents are twinned. Therefore, our study should provide some insight into the structural details of the parent compound, whose importance as a catalyst in the polymerization of $\alpha$-olefins is well known (see, for instance, ref. 21 and references therein).

EXPERIMENTAL
The compound. $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$, was prepared by M. Hillman and A Weiss who kindly provided samples. The crystal selected for the X-ray study was a dark red-brown parallelepiped whose dimensions were $0.58 \times 0.38 \times 0.33 \mathrm{~mm}$ along the (101), (101), and (010) directions, respectively. A series of Weissenberg and precession photographs taken with $\mathrm{Cu} K_{\bar{x}}$ and Mo $K_{\bar{x}}$ radiation showed the crystal to be monoclinic with $2 / m$ Laue symmetry. The systematic extinctions were: ( $h 01$ ) for $h+1$ odd and ( $0 k 0$ ) for $k$ odd. These absences are consistent with the space group $P 2_{1} / n$, whose fourfold set of general positions is $\pm\left(x, y, z ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$. The observed density is 1.57 (1) while the calculated density is $1.57 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ for a formula weight of $289.05 \mathrm{~g} / \mathrm{mol}$ and four molecules in a unit cell of volume $1228.6 \AA^{3}$. The unit cell parameters of $a=8.490(2), b=14.209(4), c=10.185(2) \AA, \beta=90.43(2)^{\circ}$ were obtained from a least-squares refinement of twenty sets of setting angles for reflections which were centered, at $22^{\circ}$, on a Picker Automated diffractometer equipped with a graphite monochromator and using Mo $K_{\bar{x}}$ radiation ( $\lambda=0.71069 \AA$ ).

Data were collected with a Picker diffractometer controlled by the Brookhaven Multiple Spectrometer Control System. The scintillation counter system included a pulse height analyzer and pulse shape discriminator and was set to accept approximately $90 \%$ of the diffracted intensity. The $b^{*}$ axis of the crystal coincided with the $\varphi$ axis of the instrument and the data were collected using a $\theta-2 \theta$ step scan technique. A reflection was scanned in steps of $\Delta(2 \theta)=0.02^{\circ}$, with a counting time of two seconds for each step. The total scan range of $1.2(1.0+1.0 \tan \theta)$ was centered about the Bragg angle which corresponds to the unweighted average wavelength of $0.7104 \AA$ for Mo $K_{\alpha_{1}}$ and Mo $K_{\alpha_{2}}$ radiation. The background was taken to be the total count for the five points at each end of the scan and no attempt was made to fit the data points to a polynomial. The intensities of 2754 reflections, of which 2264 were unique, were measured for $2 \theta \leqslant 50.4^{\circ}$. Two standard reflections were measured every 30 reflections as a check on electronic and crystal stability. Individual measurements were within $3 \%$ of the average values of these standard reflections indicating no crystal decomposition.

The data were corrected for Lorentz-polarization effects and absorption. The absorption coefficient, $\mu$, for Mo $K_{\bar{\alpha}}$ radiation is estimated to be $i 1.26 \mathrm{~cm}^{-1}$ from the atomic absorption coefficients ${ }^{2}$. The absorption correction ${ }^{3}$ was made based on the equations of the crystal faces of the form (101) and (010) and the transmission factors
J. Organometal. Chem., 30 (1971) 75-87
ranged from 0.58 to 0.70 . Reflections for which equivalent forms were collected were averaged and this gave 1668 reflections for which $F_{0}^{2} \geqslant 3 \sigma\left(F_{0}^{2}\right)$ with $\sigma\left(F_{0}^{2}\right)=1 / L p[(I+$ $\left.B)^{2}+(0.05 I)^{2}\right]^{\frac{1}{2}}$, where $L p$ is the Lorentz-polarization factor, $I$ is the total integrated peak, and $B$ is the time scaled background ${ }^{4}$.

SOLUTION AND REFINEMENT
The 1668 reflections for which $F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)$ were used to solve and refine the structure. All least-squares refinements were carried out on $F$, the function minimized being $\Sigma \omega\left(\left|F_{\mathrm{n}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $\left|F_{\mathrm{o}}\right|$ and $\left|F_{\mathrm{c}}\right|$ are the observed and calculated structure amplitudes and $\omega=4 F_{0}^{2} / \sigma^{2}\left(F_{0}^{2}\right)$. In all calculations of $F_{c}$, the atomic scattering factors for the titanium, chlorine, carbon, and hydrogen atoms were taken from the tabulation by Cromer ${ }^{5}$. The effects of anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right)^{6}$ of the titanium and chlorine atoms were included in the calculation of $F_{c}$.

A Patterson function yielded approximate coordinates for the titanium atom and the two chlorine atoms. This was followed by an observed Fourier synthesis based on $F^{2}$ which gave approximate coordinates for the thirteen carbon atoms. Two cycles of full-matrix, isotropic, least-squares refinement of the positions of the titanium atom, the two chlorine atoms, the three methylene carbon atoms, and the group parameters of the $\mathrm{C}_{5} \mathrm{H}_{4}$ rings were carried out. For the planar rigid groups, the values of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond lengths were taken as $1.419 \AA$ and $0.98 \AA$, respectively. After one cycle of refinement where the titanium and two chlorine atoms were refined with anisotropic thermal parameters, the positions of the methylene hydrogen atoms were calculated assuming tetrahedral geometry about the methylene carbon atoms and a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$. The methylene carbon atoms were then allowed to refine with anisotropic thermal parameters and the positions of the methylene hydrogen atoms were recalculated. Three cycles of refinement in which the si teen nonhydrogen atoms were refined with anisotropic thermal parameters, the hydrogen atoms were not refined and assigned a thermal parameter of $6.0 \AA^{2}$, and the isotropic extinction coefficient was refined gave discrepancy factors $R_{1}=0.032$ and $R_{2}=0.045$ where $R_{1}=\Sigma\left|\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)\right| / \Sigma\left|F_{0}\right|$ and $R_{2}=\left\{\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma \omega F_{0}^{2}\right\}^{\frac{1}{2}}$. In the final two cycles of refinement the titanium, two chlorine, and the thirteen carbon atoms were refined with anisotropic thermal parameters, the positional and isotropic thermal parameters of the fourteen hydrogen atoms were refined, and an isotropic extinction coefficient was refined. The refinement converged to give final values of $\boldsymbol{R}_{1}=0.029$ and $R_{2}=0.040$. For the 202 variables and 1668 observations, the error in an observation of unit weight was 1.20 electrons.

The refined isotropic extinction parameter ${ }^{\text { }}$ corresponds to a mosaic spread parameter of 114 sec or a domain size of $3.6 \times 10^{-6} \mathrm{~cm}$ depending upon whether a 7achariasen ${ }^{7}$ type I or type II description is chosen. The calculated structure amplitudes were multiplied by the extinction correction

$$
E=\left[1+\frac{2 \widehat{T} \cdot F_{c}^{2} \cdot g \cdot \lambda^{3}\left(1+\cos ^{4} 2 \theta\right)}{12.593 V^{2} \cdot 10^{-4} \cdot(\sin 2 \theta) \cdot\left(1+\cos ^{2} 2 \theta\right)}\right]
$$

where $F_{c}^{2}$ is on an absolute scale, $\lambda$ is in $\AA$, the cell volume, $V$, is in $\AA^{3}, \bar{T}$ is average path length in the crystal for each reflection appropriately modified for absorption, and $g$ (the refined extinction parameter) has the value of $510(20) e^{--2}$.

TABLE 1
POSITIONAL AND THERMAL PARAMETERS
A. Fractional coordinates

| Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| Ti | -0.23670(5) | 0.07583 (3) | 0.21761 (4) |
| Cl1 | -0.29165(10) | -0.05870(5) | $0.08718(7)$ |
| Cl 2 | 0.01133 (9) | 0.01830(6) | 0.28978 (8) |
| C1 | -0.6149(4) | $0.1725(2)$ | 0.2682 (4) |
| C2 | -0.5711(4) | $0.2653(2)$ | 0.2072 (3) |
| C3 | -0.4822(4) | 0.2535(2) | 0.0803 (3) |
| C1-1 | -0.4811 (3) | 0.1151 (2) | $0.3216(2)$ |
| C1-2 | -0.4696(4) | $0.0168(2)$ | 0.3185(3) |
| C1-3 | -0.3403 (4) | -0.0114(2) | 0.3954(3) |
| C1-4 | -0.2713(4) | 0.0691 (2) | 0.4496 (3) |
| Cl-5 | -0.3557(3) . | 0.1471 (2) | 0.4035(2) |
| C2-1 | -0.3218(3) | 0.2101 (2) | 0.0915 (3) |
| C2-2 | -0.2607(5) | 0.1439 (2) | $0.0037(3)$ |
| C2-3 | -0.1017(5) | 0.1306 (3) | 0.0309 (4). |
| C2-4 | -0.0609(4) | 0.1904 (3) | 0.1343 (5) |
| C2-5 | -0.1966(4) | 0.2377 (2) | 1.1746(3) |
| H11 | -0.683(5) | 0.184 (3) | . 344 (5) |
| H12 | -0.676(5) | $0.134(3)$ | J. 201 (4) |
| H21 | -0.505(3) | $0.303(2)$ | 0.275 (3) |
| H22 | -0.667(5) | $0.305(3)$ | $0.194(4)$ |
| H31 | -0.467(4) | 0.316 (3) | $0.039(3)$ |
| H32 | -0.550(4) | 0.214 (3) | 0.011 (4) |
| Hil-2 | -0.546(3) | -0.022(2) | $0.264(2)$ |
| H1-3 | -0.289(4) | -0.069(2) | 0.408 (3) |
| H1-4 | -0.181(4) | 0.071 (2) | $0.504(3)$ |
| H1-5 | -0.329(3) | $0.214(2)$ | 0.428 (3) |
| H2-2 | -0.315(3) | $0.112(2)$ | -0.060(3) |
| H2-3 | -0.041(4) | $0.087(2)$ | -0.010(3) |
| H2-4 | 0.027(5) | 0.194(3) | 0.177(4) |
| H2-5 | -0.206(4) | 0.281 (2) | $0.242(3)$ |

B. Thermal parameters

| Atom | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ti}^{\text {a }}$ | 934(8) | 272(2) | 606(5) | 10(3) | 109(4) | 17(2) |
| Cl1a | 1848(14) | 404(4) | 878 (8) | -44(6) | 199 (8) | -172(4) |
| $\mathrm{Cl}^{\text {a }}$ | 1141(12) | 626(5) | 1200(9) | 185(6) | -43(8) | 216(5) |
| $\mathrm{Cl}^{\text {b }}$ | 100(4) | 65(2) | 117 (4) | 14(3) | 15(4) | -1(2) |
| C2 ${ }^{\text {b }}$ | 136(5) | 56(2) | 122(4) | $33(3)$ | 10(4) | 4(2) |
| C3 ${ }^{\text {b }}$ | 149(5) | 51 (2) | 106(4) | 15(3) | -8(4) | 10(2) |
| C1-1 ${ }^{\text {b }}$ | 106(4) | $46(2)$ | 69 (3) | 0 (2) | $23(3)$ | -5(2) |
| C1-2 ${ }^{\text {b }}$ | 132(5) | $44(2)$ | 89 (3) | -24(2) | 42(3) | -11(2) |
| C1-3 ${ }^{\text {b }}$ | 177(6) | 40(2) | $78(3)$ | 2(3) | 41 (3) | 11 (2) |
| C1-4 ${ }^{\text {b }}$ | $158(6)$ | $56(2)$ | 55(3) | 7 (3) | 8(3) | $2(2)$ |
| C1-5 ${ }^{\text {d }}$ | 133(5) | 41 (2) | $64(3)$ | 1 (2) | 15(3) | -10(2) |
| C2-1 ${ }^{\text {b }}$ | 118(4) | 32(2) | 84(3) | 3(2) | 12(3) | $10(2)$ |
| C2-2 ${ }^{\text {b }}$ | $234(7)$ | 44(2) | 65(3) | 17(3) | 22(4) | 13 (2) |
| C2-3 ${ }^{\text {b }}$ | 211 (7) | $54(2)$ | 138(5) | 36(3) | 104(5) | $40(3)$ |
| C2-4b | 104(6) | $58(2)$ | 217(7) | -11(3) | $11(5)$ | 65(3) |
| C2-5 ${ }^{\text {b }}$ | 169(6) | $29(1)$ | 114(4) | -10(2) | -2(4) | 13(2) |

[^1]TABLE 1 (continued)

| Atom | $\beta_{11}$ |
| :--- | :--- | :--- |
| H11 | $4.4(1.1)$ |
| $\mathrm{H}_{1}$ | $2.5(1.1)$ |
| $\mathrm{H}^{c}$ | $1.9(5)$ |
| $\mathrm{H} 22^{c}$ | $4.5(9)$ |
| $\mathrm{H} 31^{c}$ | $3.2(7)$ |
| $\mathrm{H} 32^{c}$ | $4.1(8)$ |
| $\mathrm{H} 1-2^{c}$ | $1.4(4)$ |
| $\mathrm{H} 1-3^{c}$ | $2.6(6)$ |
| $\mathrm{H} 1-4^{c}$ | $2.7(6)$ |
| $\mathrm{H} 1-5^{c}$ | $3.0(6)$ |
| $\mathrm{H} 2-2^{c}$ | $24(6)$ |
| $\mathrm{H} 2-3^{c}$ | $2.9(6)$ |
| $\mathrm{H} 2-4^{c}$ | $3.3(9)$ |
| $\mathrm{H} 2-5^{c}$ | $3.7(8)$ |
| C. RMS amplitudes of vibration along the three principal axes of the thermal ellipsoid $(A)$ |  |


| Atom | Axis I | Axis 2 | Axis 3 |
| :--- | :--- | :--- | :--- |
| Ti | 0.165 | 0.169 | 0.194 |
| CII | 0.175 | 0.229 | 0.267 |
| C12 | 0.184 | 0.233 | 0.284 |
| C2 | 0.181 | 0.250 | 0.263 |
| C3 | 0.181 | 0.250 | 0.275 |
| C1-1 | 0.200 | 0.243 | 0.251 |
| C1-3 | 0.163 | 0.212 | 0.223 |
| C1-4 | 0.166 | 0.195 | 0.272 |
| C1-5 21 | 0.169 | 0.209 | 0.273 |
| C2-2 | 0.166 | 0.231 | 0.249 |
| C2-3 | 0.169 | 0.213 | 0.226 |
| C2-5 | 0.168 | 0.214 | 0.226 |

${ }^{\alpha, \beta}$ Multiplied by $10^{5}$ and $10^{4}$, respectively. The form of the thermal ellipsoid is $\exp -\left[\beta_{11}-h^{2}+\beta_{22} \cdot k^{2}+\right.$ $\left.\beta_{33} \cdot l^{2}+2 \beta_{12} \cdot h \cdot k+2 \beta_{13} \cdot h \cdot l+2 \beta_{23} \cdot k \cdot l\right]$. ${ }^{\text {c }}$ Isotropic temperature factor in $\AA^{2}$.

The positional and thermal parameters derived from the last cycle of refinement are presented in Table 1, along with the associated standard deviations in these parameters as estimated from the inverse of the normal equations matrix. The final value of $10\left|F_{0}\right|$ and $10\left|F_{\mathrm{c}}\right|$ (in electrons) are given in Table 2 for the 1668 reflections which were used in the refirement.

The following programs were used: PROCH (initial processing of data); DATAPH (Lorentz-polarization and absorption corrections); ECSORTH (sorting and averaging of data); JIMDAP (local version of the Zalkin Fourier summation program); LINUS (modification of the Busing Martin, and Levy ORFLS leastsquares program) ${ }^{8}$; ORFFE (function and error) ${ }^{9}$; RBANG (rigid group parameter) ${ }^{10}$; PLANET (least squares planes) ${ }^{11}$; ORTEP (molecular plotting) ${ }^{12}$.
TABLE 2
OBSER VED
OBSER VED AND CALCLLATED STRUCTURR AMPLITUDES








































 -



-
J. Organometal. Chem., 30 (1971) 7587






























 -

 …….....










## DISCUSSION

The molecular configuration of $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$ is given in Fig. 1. A stereoscopic view of the molecule is given in Fig. 2 and the packing of the molecules in the unit cell is shown in Fig. 3. A selection of bond distances and bond angles,


Fig. 1. The molecular configuration of $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$. All atoms are isotropic and of arbitrary magnitude.


Fig. 2. Stereoscopic view of the $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$ molecule. The Fig is oriented to match the labelled Fig. 1, thus there is a one-to-one correspondence between Figs. 1 and 2.


Fig. 3. The packing of the molecules in a monoclinic unit cell. The axes of the right-handed cell are as follows: positive $x$ runs from left to right; positive $y$ runs from the bottom to the top of the Fig.
together with estimated standard deviations which include correlation effects, is given in Table 3. Least-squares planes through selected atoms and deviations of atoms from these planes are given in Table 4. The geometry about the titanium atom may be viewed as a distorted tetrahedron with centroid- $\mathrm{Ti}-$ centroid and $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angles of $132.64^{\circ}$ and $93.69(5)^{\circ}$, respectively.

The $\mathrm{Ti}-\mathrm{Cl}$ distances in this structure are $2.372(1)$ and $2.364(3) \AA$. . In complexes for which there are no $\pi$-cyclopentadienyl groups coordinated to the titanium atom, a regular increase has been observed in $\mathrm{Ti}-\mathrm{Cl}$ bond distances as the coordination number increases ${ }^{13}$. In tetrahedral $\mathrm{TiCl}_{4}{ }^{14}$, the $\mathrm{Ti}-\mathrm{Cl}$ distance is $2.185 \AA$ and in the distorted trigonal bipyramidal complex, $\mathrm{TiCl}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}$ dimer ${ }^{15}$, they are 2.209 (6) and $2.219(6) \AA$. In the octahedral complex $\mathrm{TiCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}{ }^{13}$, the $\mathrm{Ti}-\mathrm{Cl}$ bond distance is $2.283(16) \AA$ and in another octahedral complex, $\left[\mathrm{TiCl}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right] \mathrm{O}$. $\mathrm{CHCl}_{3}{ }^{16}$, the distances are $2.32(2)$ and $2.30(1) \AA$. When there is one $\pi$-cyclopentadienyl ring coordinated to the titanium atom, the $\mathrm{Ti}-\mathrm{Cl}$ bond distances are longer than those observed in complexes which have the same geometry but contain no $\pi$-cyclopentadienyl groups. In the tetrahedral complex $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{4}{ }^{17}$, the $\mathrm{Ti}-\mathrm{Cl}$ bond distances are 2.263(4), 2.270(4), and 2.264(4) $\AA$ and in the octahedral complex $\mathrm{TiCl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}{ }^{18}$ the distance is $2.37 \AA$. In $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$ the coordination about the titanium atom is a distorted tetrahedron with two $\pi$-cyclopentadienyl groups coordinated to the titanium atom and two long $\mathrm{Ti}-\mathrm{Cl}$ bonds having a mean length of 2.368 (esd 0.004 ) $\AA$.

An interesting feature of this structure is the fact that the $\pi$-cyclopentadienyl rings are identical and symmetrically displaced with respect to the titanium atom. The Ti -(ring centroid) distances are both $2.06 \AA$ and are typical of the distances found in other $\pi$-cyclopentadienyltitanium complexes ${ }^{19}$. The ten $\mathrm{Ti}-\mathrm{C}$ distances associated with the $\pi$-cyclopentadienyl rings range from $2.360(4)$ to $2.407(3) \AA$ with a mean value of 2.381 (esd 0.005 ) $\AA$. This is essentially equal to the value of $2.374(5) \AA$ found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}{ }^{1}, 2.38 \AA$ found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{20}$, and $2.38 \AA$ found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2^{-}}$ $\mathrm{TiCl}_{2} \mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}{ }^{21}$. The chlorine-metal-chlorine plane in $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}$ is the approximate bisector of the centroid-metal-centroid angle of $132.6^{\circ}$, just as the sulfur-metal-sulfur plane is the approximate bisector in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2}{ }^{20}$ and in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(3,4 \text {-toluenedithiol })^{22}$. The normal to the chlorine-titanium-chlorine

TABLE 3
INTERATOMIC DISTANCES ( $\AA$ ) AND ANGLES ( ${ }^{\circ}$ )

| A. Bond distances |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ti}-\mathrm{Cll}$ |  |  |  |
| $\mathrm{Ti}-\mathrm{Cl} 2$ 2.36 |  |  |  |
| Ti-(ring 1 centroid) 2.06 |  |  |  |
| Ti-(ring 2 centroid) 2.06 |  |  |  |
| $\mathrm{Ti}-\mathrm{Cl} 1 \mathrm{l}$ | $2.400(4)$ | C1-1-Cl-2 | 1.401(4) |
| $\mathrm{Ti}-\mathrm{Cl} 1-2$ | 2.384 (4) | C1-2-C1-3 | $1.398(5)$ |
| Ti-C1-3 | 2.369 (4) | C1-3-C1-4 | 1.396(4) |
| Ti-C1-4 | 2.385 (4) | C1-4-Cl-5 | 1.397(4) |
| Ti-C1-5 | 2.379 (3) | C1-5-Cl-1 | 1.419(4) |
| Ti-C2-1 | 2.407 (3) | $\mathrm{C} 2-1-\mathrm{C} 2-2$ | 1.401 (4) |
| Ti-C2-2 | 2.390 (4) | C2-2-C2-3 | $1.385(\overline{0})$ |
| Ti C2-3 | 2.360 (4) | C2-3-C2-4 | 1.395 (6) |
| $\mathrm{Ti}-\mathrm{C} 2-4$ | 2.369 (3) | C2-4-C2-5 | $1.396(5)$ |
| Ti-C2-5 | 2.367 (3) | C2-5-C2-1 | 1.406(4) |
| C1-Cl-1 | 1.494(4) | C1-H11 | 1.02(5) |
| C1-C2 | 1.505(5) | C1-H12 | 1.02 (5) |
| C2-C3 | 1.511 (5) | C2-H21 | 1.04(3) |
| C3-C2-1 | 1.495 (5) | C2-H22 | 1.00 (4) |
|  |  | C3-H31 | 0.99 (4) |
|  |  | C3-H32 | 1.06(4) |
| C1-2-H1-2 | 1.01 (3) | C2-2-H2-2 | 0.91 (3) |
| C1-3-H1-3 | 0.94(3) | C2-3-H2-3 | 0.91 (3) |
| C1-4-H1-4 | 0.94(3) | C2-4-H2-4 | 0.86(4) |
| C1-5-H1-5 | 1.01 (3) | C2-5-H2-5 | 0.92(4) |
| $B$. Bond angles |  |  |  |
| $\mathrm{Cll}-\mathrm{Ti}-\mathrm{Cl} 2$ | 93.69(5) | R1-Ti-Cl2 | 105.93 |
|  | 132.64 | R2-Ti-Cll | 105.80 |
| $\mathrm{R1}-\mathrm{Ti}-\mathrm{Cl} 1$ | 106.20 | R2-Ti-Cl2 | 105.87 |


| ${ }^{2} \mathbf{R}_{t}=$ centroid of ring $i$ |  |  |
| :---: | :---: | :---: |
| C1-C1-1-C1-2 | 126.1(3) | H1-2-C1-2-C1-1 121(1) |
| C1-C1-1-Cl-5 | 126.8(3) | H1-2-C1-2-C1-3 130(1) |
| C1-2-C1-1-C1-5 | 106.3(3) | H1-3-C1-3-C1-2 133(2) |
| C1-1-C1-2-C1-3 | 109.1(3) | H1-3-C1-3-Cl-4 119(2) |
| C1-2-C1-3-C1-4 | 108.0(3) | H1-4-C1-4-C1-3.126(2) |
| Cl-3-C1-4-Cl-5 | 107.8(3) | H1-4-C1-4-C1-5 126(2) |
| C1-4-C1-5-C1-1 | 108.7(3) | H1-5-C1-5-C1-4 123(2) |
| C3-C2-1-C2-2 | 124.7(3) | H1-5-C1-5-C1-1 128(2) |
| C3-C2-1-C2-5 | 127.6(3) | H2-2-C2-2-C2-1 127(2) |
| C2-2-C2-1-C2-5 | 106.9(3) | H2-2-C2-2-C2-3 124(2) |
| C2-1-C2-2-C2-3 | 109.1(3) | H2-3-C2-3-C2-2 124(2) |
| $\mathrm{C} 2-2-\mathrm{C} 2-3-\mathrm{C} 2-4$ | 107.6(3) | H2-3-C2-3-C2-4 129(2) |
| C2-3-C2-4-C2-5 | 108.4(4) | H2-4-C2-4-C2-3 129(3) |
| C2-4-C2-5-C2-1 | 107.8(3) | $\begin{aligned} & \mathrm{H} 2-4-\mathrm{C} 2-4-\mathrm{C} 2-5 \\ & \mathrm{H} 2-5-\mathrm{C} 2-5-\mathrm{C} 2-4 \\ & 128(2) \end{aligned}$ |
| C1-1-C1-C2 | 116.1(3) | H2-5-C2-5-C2-1 124(2) |
| C1-C2-C3 | 112.5(3) |  |
| C2-C3-C2-1 | 116.1(3) |  |

TABLE 3 (continued)

| H11-C1-C1-1 103(3) | H21-C2-C1 108(2) | H31-C3-C2-1 106(2) |
| :--- | :--- | :--- | :--- |
| H11-C1-C2 $110(3)$ | H21-C2-C3 111(2) | H31-C3-C2 110(2) |
| H11-C1-H12 110(4) | H21-C2-H22 103(3) | H31-C3-H32 105(3) |
| H12-C1-C2 109(2) | H22-C2-C1 111(2) | H32-C3-C2 111(2) |
| H12-C1-C1-1 109(3) | H22-C2-C3 111(2) | H32-C3-C2-1 109(2) |


| C. Non-bonded intramolecular contacts less than 3.5 A about the Ti, Cl1, and Cl2 atoms |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ti-H1-2 | 3.00 | Cl1-H1-2 | 2.87 |  |
| Ti- $\mathrm{H}_{1-3}$ | 287 | Cl1-H1-3 | 3.27 |  |
| Ti-H1-4 | 2.95 | $\mathrm{Cl1-H2-2}$ | 2.86 |  |
| Ti-Hi-S | 3.02 | Cl1-H2-3 | 3.14 |  |
| Ti-H2-2 | 2.95 |  |  |  |
| Ti-H2-3 | 2.87 | Cl2-Cl-3 | 3.20 |  |
| Ti-H2-4 | 2.83 | Cl2-Cl-4 | 3.00 |  |
| Ti-H2-5 | 294 | Cl2-C2-3 | 3.22 |  |
|  |  | Cl2-C2-4 | 2.97 |  |
| $\mathrm{Cl} 1-\mathrm{Cl} 2$ | 3.45 | C12-H1-3 | 3.09 |  |
| $\mathrm{Cl} 1-\mathrm{Cl}-2$ | 3.01 | $\mathrm{Cl} 2-\mathrm{H} 1-4$ | 2.84 |  |
| $\mathrm{Cl} 1-\mathrm{Cl}-3$ | 3.24 | $\mathrm{Cl} 2-\mathrm{H} 2-3$ | 3.23 |  |
| Cl1-C2-2 | 3.01 | Cl2-H2-4 | 275 |  |
| $\mathrm{Cl1}-\mathrm{C} 2-3$ | 3.18 |  |  |  |

D. Internolecular contacts less than $3.50 \AA$ about the Cl and Cl atoms

| $\mathrm{Cl} 1-\mathrm{H} 2-3$ | 2.96 | 000 | $2^{a}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cl} 1-\mathrm{HI} 2$ | 3.13 | 100 | 2 |
| $\mathrm{Cl} 1-\mathrm{H} 32$ | 2.77 | 100 | 2 |
| $\mathrm{Cl1}-\mathrm{H} 2-2$ | 3.43 | $\overline{100}$ | 2 |
| $\mathrm{Cl} 1-\mathrm{H} 21$ | 3.47 | $\overline{110}$ | 3 |
| $\mathrm{Cl} 1-\mathrm{H} 1-5$ | 3.39 | 110 | 3 |
| $\mathrm{Cl} 1-\mathrm{H} 2-5$ | 2.87 | 110 | 3 |
| $\mathrm{Cl} 2-\mathrm{H} 2-3$ | 3.23 | 000 | 2 |
| $\mathrm{Cl} 2-\mathrm{H} 31$ | 3.47 | 000 | 4 |
| $\mathrm{Cl} 2-\mathrm{H} 21$ | 3.13 | $\overline{110}$ | 3 |
| $\mathrm{Cl} 2-\mathrm{H} 22$ | 3.30 | 110 | 3 |
| $\mathrm{Cl} 2-\mathrm{H} 31$ | 3.39 | 110 | 3 |
| $\mathrm{H} 12-\mathrm{Cl} 2$ | 3.25 | 100 | 1 |

${ }^{a}$ The notation 0002 indicates the second atom is in the symmetry position 2 with no cell translations.
The symmetry positions $1,2,3$, and 4 are: $x, y, z ; x, \bar{y}, \bar{z}, \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.
plane makes an angle of $24^{\circ}$ with both Ti -centroid vectors. In $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}{ }^{1}$, where the rings were asymmetrically disposed with respect to the TiS ${ }_{5}$ fragment, these angles were $17^{\circ}$ and $32^{\circ}$.

The identical nature of the two $\pi$-cyclopentadienyl rings is further demonstrated by the RMS amplitudes of vibration for motion along the three principal axes of the thermal ellipsoid given in Table 1 and by the $C-C$ distances associated with the rings. These distances range from $1.419(5) \AA$ to $1.385(5) \AA$ to give an average value of 1.399 (esd 0.003) $\AA$. The $C-C-C$ bond angles range from $106.3(3)^{\circ}$ to $109.1(3)^{\circ}$ and have an average value of $108^{\circ}$, as expected for a planar pentagon. The average $\mathrm{C}-\mathrm{C}$ bond distance is similar to that of $1.381 \AA$ found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}{ }^{1}$ for the $\pi$-cyclopentadienyl ring in which variation of the carbon-carbon bond lengths was not observed. It is

TABLE 4
PLANES ${ }^{\text {a }}$

| A. Equations of planes and distances $(A)$ from these planes |
| :--- |
| a. Plane containing $T i, C l 1$, and $C l 2$. |
| $0.4451 x+0.4373 y-0.7814 z=-2.1613$ |
| Ring 1 centroid -1.58 |
| Ring 2 centroid 1.89 |
|  |
| o. Plane containing $C 1-1, C 1-2, C 1-3, C 1-4$, and $C 1-5$. |
| $0.6052 x+0.0627 y-0.7936 z=-4.9790$ |
| C1-1 |
| C1-2 |
| C1-3 |
| C1-4 |

c. Plane containing C2-1, C2-2, C2-3, C2-4, and C2-5. $0.2258 x+0.7360 y-0.6382=0.9815$

| $\mathrm{C} 2-1$ | 0.005 | $\mathrm{H} 2-2$ | -0.014 |
| :--- | ---: | ---: | ---: |
| $\mathrm{C} 2-2$ | 0.000 | $\mathrm{H} 2-3$ | -0.081 |
| $\mathrm{C} 2-3$ | -0.011 | $\mathrm{H} 2-4$ | -0.056 |
| $\mathrm{C} 2-4$ | 0.018 | $\mathrm{H} 2-5$ | -0.013 |
| $\mathrm{C} 2-5$ | -0.010 |  |  |
| Ti | -2.060 |  |  |
| C 3 | 0.225 |  |  |

d. Plane containing Ti and the centroids of the two rings.
$-0.7405 x-0.3142 y-0.5941 z=-0.1563$
$\mathrm{Cl1} \quad 1.725$
$\mathrm{Cl} 2-1.729$
B. Angles ( ${ }^{\circ}$ ) between the normals to planes

| a-b 23.5 | $b-c ~$ |
| :--- | :--- |
| a-c 22.9 | b-d 89.8 |
| a-d 90.2 | c-d 91.1 |

C. Angles ( ${ }^{\circ}$ ) between interatomic vectors and the normals to planes

| Vector | Plane | Angle |
| :--- | :--- | ---: |
| Ti-ring 1 centroid | a | 23.9 |
| Ti-ring 1 centroid | b | 0.4 |
| Ti-ring 2 centroid | a | 23.5 |
| Ti-ring 2 centroid | c | 1.3 |
| $\mathrm{Cl}-\mathrm{Cl} 2$ | d | 0.3 |

[^2]equal to that of $1.399 \AA$ found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CuP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{23}$. This symmetrical nature of the rings is most probably due to the fact that there are no unusually close intra- or intermolecular chlorine-hydrogen contacts in this structure, (see Table 3).

In the $\left[\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right]$ group, the average value of the methylene carbon to ring carbon bond distances is $1.495(5) \AA$ and the methylene carbon-methylene carbon average bond distance is $1.508(5) \AA$. The methylene carbon atoms attached to the $\pi$-cyclopentadienyl rings are $0.2 \AA$ out of the planes of the rings, away from the metal atom. The trimethylene bridge is apparently rather rigid and in maintaining approximate tetrahedrai geometry about the methylene carbon atoms the two $\pi$-cyclopentadienyl groups are found eclipsed, rather than staggered, as may be seen by examining Figs. 1 and 2. All three carbons atoms of the exocyclic chain are to one side of the plane defined by the titanium atom and the two ring centroids, the distances being $1.67,1.32$ and $1.55 \AA$, respectively, for $\mathrm{C} 1, \mathrm{C} 2$ and C 3 .

## ACKNOWLEDGEMENTS

We wish to thank M. Hillman and A. Weiss (Brookhaven National Laboratory) for the gift of the crystals and S. J. La Placa for being his usual, quietly useful, effective friend.

## REFERENCES

[^3]
[^0]:    * Work performed under the auspices of the U.S. Atomic Energy Commission.
    $\star \star$ After this manuscript was completed a short note appeared (see ref. 24), which describes the results of an electron diffraction study of $\mathrm{C}_{2} \mathrm{ZrCl}_{2}$. These results, where relevant, agree with ours.
    *** $\mathrm{Cp}=$ cyclopentadienyl

[^1]:    J. Organometal. Chem., 30 (1971) 75-87

[^2]:    ${ }^{a}$ The equations of the planes and distances and angles were obtained with the Smith plane program. Weights used in the calculation equalled $1 /(E X \cdot E Y \cdot E Z \cdot A \cdot B \cdot C)^{3}$ where $E X, E Y$, and $E Z$ equal the errors in the fractional coordinates of the atom which are listed in Table 1 and $A, B$, and $C$ are the cell constants. The equation of the plane is expressed in orthogonal coordinates which are related to the fractional coordinates $x, y, z$ by the transformation: $x=a \cdot x+c \cdot z \cdot \cos \beta ; y=b \cdot y ; o=c \cdot z \cdot \sin \beta$.

[^3]:    1 E. F. Epstein, I. Bernal and H. Köpf. J. Organomeral. Chem., 26 (1971) 229.
    2 International Tables for X-Ray Crystallography, Vol. 3, Kynoch, Birmingham, England, 1967, p. 162.
    3 P. Coppens, L. Leiserowitz and D. Rabinowitz, Acta Crystallogr., 18 (1965) 1035.
    4 P. W. R. Corfield, R. J. Doedens and J. A. Igers, Inorg. Chem., 6 (1967) 197.
    5 D. T. Cromer, to be published in the new edition of the International Tablesfor $X$-Ray Crystallography.
    6 International Tables for X-Ray Crystallography, Vol. 3, Kynoch, Birmingham, England, 1967, p. 215.
    7 W. H. Zachariasen, Acta Crystallogr., 23 (1967) 558.
    8 W. R. Busing, K. O. Martin and H. Levy, OrFLS, A Fortran Crystallographic Least Squares Program, ORNL-TM-305, Oak Ridge National Laboratory, 1962.
    9 W. R. Busing, K. O. Martin and H. Levy, OrfFE, A Fortran Crystallographic Function and Error Program, ORNL-TM-306, Oak Ridge National Laboratory, 1962.
    10 S. F. Watkins, Ph.D. Thesis, University of Wisconsin, 1967.
    11 D. L. Smith, Ph.D. Thesis, University of Wisconsin, 1962.
    12 C. K. Johnson, ORTEP, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL-3794-Revised, Oak Ridge National Laboratory, 1965.
    13 B. J. Studd and A. G. Swallow, J. Chem. Soc., (1908) 1961.
    14 Tables of Interatomic Distance and Configuration in Moiecules and Ions, Supplement Special Publication No. 18, Chem. Soc., London, 1965, p. M205.
    15 K. Watenpaugh and C. W. Caughlan, Inorg. Chem., 5 (1966) 1782.
    16 K. Watenpaugh and C. W. Caughlan, Inorg. Chem., 6 (1967) 963.
    17 A. C. Skapski and P. G. H. Troughton, Acta Crystallogr., Sect. B26 (1970) 716.
    18 J. D. Matthews, Chem. Commun., (1969) 883.
    19 P. J. Wheatley, in J. D. Dunitz and J. A. Ibers (Eds.), Perspectives ïn Structural Chemistry, Vol. 1, Wiley and Sons, New York, N.Y., 1967, p. 1.
    20 S. F. Watkins and L. F. Dahl, to be published.
    21 G. Natta, P. Corradini and I. W. Bassi, J. Amer. Chem. Soc., 80 (1958) 755.
    22 J. R. Knox and C. K. Prout, Acta Crystallogr., Seet. B25 (1969) 2013.
    23 F. A. Cotton and J. Takats, J. Amer. Chem. Soc., 92 (1970) 2353.
    24 I. A. Ronova, N. V. Aleksfey, N. I. Gapotchenko and Yu. T. Struchkov, J. Organometal. Chem., 25 (1970) 149.

